aboutsummaryrefslogtreecommitdiff
path: root/lib/monocypher-ed25519.c
blob: 5ca6e6308142ed04cbec9705663e7d9c794942a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
// Monocypher version 3.1.1
//
// This file is dual-licensed.  Choose whichever licence you want from
// the two licences listed below.
//
// The first licence is a regular 2-clause BSD licence.  The second licence
// is the CC-0 from Creative Commons. It is intended to release Monocypher
// to the public domain.  The BSD licence serves as a fallback option.
//
// SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0
//
// ------------------------------------------------------------------------
//
// Copyright (c) 2017-2019, Loup Vaillant
// All rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the
//    distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// ------------------------------------------------------------------------
//
// Written in 2017-2019 by Loup Vaillant
//
// To the extent possible under law, the author(s) have dedicated all copyright
// and related neighboring rights to this software to the public domain
// worldwide.  This software is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication along
// with this software.  If not, see
// <https://creativecommons.org/publicdomain/zero/1.0/>

#include "monocypher-ed25519.h"

/////////////////
/// Utilities ///
/////////////////
#define FOR(i, min, max)     for (size_t i = min; i < max; i++)
#define COPY(dst, src, size) FOR(i, 0, size) (dst)[i] = (src)[i]
#define ZERO(buf, size)      FOR(i, 0, size) (buf)[i] = 0
#define WIPE_CTX(ctx)        crypto_wipe(ctx   , sizeof(*(ctx)))
#define WIPE_BUFFER(buffer)  crypto_wipe(buffer, sizeof(buffer))
#define MIN(a, b)            ((a) <= (b) ? (a) : (b))
typedef uint8_t u8;
typedef uint64_t u64;

// returns the smallest positive integer y such that
// (x + y) % pow_2  == 0
// Basically, it's how many bytes we need to add to "align" x.
// Only works when pow_2 is a power of 2.
// Note: we use ~x+1 instead of -x to avoid compiler warnings
static size_t align(size_t x, size_t pow_2)
{
    return (~x + 1) & (pow_2 - 1);
}

static u64 load64_be(const u8 s[8])
{
    return((u64)s[0] << 56)
        | ((u64)s[1] << 48)
        | ((u64)s[2] << 40)
        | ((u64)s[3] << 32)
        | ((u64)s[4] << 24)
        | ((u64)s[5] << 16)
        | ((u64)s[6] <<  8)
        |  (u64)s[7];
}

static void store64_be(u8 out[8], u64 in)
{
    out[0] = (in >> 56) & 0xff;
    out[1] = (in >> 48) & 0xff;
    out[2] = (in >> 40) & 0xff;
    out[3] = (in >> 32) & 0xff;
    out[4] = (in >> 24) & 0xff;
    out[5] = (in >> 16) & 0xff;
    out[6] = (in >>  8) & 0xff;
    out[7] =  in        & 0xff;
}

///////////////
/// SHA 512 ///
///////////////
static u64 rot(u64 x, int c       ) { return (x >> c) | (x << (64 - c));   }
static u64 ch (u64 x, u64 y, u64 z) { return (x & y) ^ (~x & z);           }
static u64 maj(u64 x, u64 y, u64 z) { return (x & y) ^ ( x & z) ^ (y & z); }
static u64 big_sigma0(u64 x) { return rot(x, 28) ^ rot(x, 34) ^ rot(x, 39); }
static u64 big_sigma1(u64 x) { return rot(x, 14) ^ rot(x, 18) ^ rot(x, 41); }
static u64 lit_sigma0(u64 x) { return rot(x,  1) ^ rot(x,  8) ^ (x >> 7);   }
static u64 lit_sigma1(u64 x) { return rot(x, 19) ^ rot(x, 61) ^ (x >> 6);   }

static const u64 K[80] = {
    0x428a2f98d728ae22,0x7137449123ef65cd,0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc,
    0x3956c25bf348b538,0x59f111f1b605d019,0x923f82a4af194f9b,0xab1c5ed5da6d8118,
    0xd807aa98a3030242,0x12835b0145706fbe,0x243185be4ee4b28c,0x550c7dc3d5ffb4e2,
    0x72be5d74f27b896f,0x80deb1fe3b1696b1,0x9bdc06a725c71235,0xc19bf174cf692694,
    0xe49b69c19ef14ad2,0xefbe4786384f25e3,0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65,
    0x2de92c6f592b0275,0x4a7484aa6ea6e483,0x5cb0a9dcbd41fbd4,0x76f988da831153b5,
    0x983e5152ee66dfab,0xa831c66d2db43210,0xb00327c898fb213f,0xbf597fc7beef0ee4,
    0xc6e00bf33da88fc2,0xd5a79147930aa725,0x06ca6351e003826f,0x142929670a0e6e70,
    0x27b70a8546d22ffc,0x2e1b21385c26c926,0x4d2c6dfc5ac42aed,0x53380d139d95b3df,
    0x650a73548baf63de,0x766a0abb3c77b2a8,0x81c2c92e47edaee6,0x92722c851482353b,
    0xa2bfe8a14cf10364,0xa81a664bbc423001,0xc24b8b70d0f89791,0xc76c51a30654be30,
    0xd192e819d6ef5218,0xd69906245565a910,0xf40e35855771202a,0x106aa07032bbd1b8,
    0x19a4c116b8d2d0c8,0x1e376c085141ab53,0x2748774cdf8eeb99,0x34b0bcb5e19b48a8,
    0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb,0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3,
    0x748f82ee5defb2fc,0x78a5636f43172f60,0x84c87814a1f0ab72,0x8cc702081a6439ec,
    0x90befffa23631e28,0xa4506cebde82bde9,0xbef9a3f7b2c67915,0xc67178f2e372532b,
    0xca273eceea26619c,0xd186b8c721c0c207,0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178,
    0x06f067aa72176fba,0x0a637dc5a2c898a6,0x113f9804bef90dae,0x1b710b35131c471b,
    0x28db77f523047d84,0x32caab7b40c72493,0x3c9ebe0a15c9bebc,0x431d67c49c100d4c,
    0x4cc5d4becb3e42b6,0x597f299cfc657e2a,0x5fcb6fab3ad6faec,0x6c44198c4a475817
};

static void sha512_compress(crypto_sha512_ctx *ctx)
{
    u64 a = ctx->hash[0];    u64 b = ctx->hash[1];
    u64 c = ctx->hash[2];    u64 d = ctx->hash[3];
    u64 e = ctx->hash[4];    u64 f = ctx->hash[5];
    u64 g = ctx->hash[6];    u64 h = ctx->hash[7];

    FOR (j, 0, 16) {
        u64 in = K[j] + ctx->input[j];
        u64 t1 = big_sigma1(e) + ch (e, f, g) + h + in;
        u64 t2 = big_sigma0(a) + maj(a, b, c);
        h = g;  g = f;  f = e;  e = d  + t1;
        d = c;  c = b;  b = a;  a = t1 + t2;
    }
    size_t i16 = 0;
    FOR(i, 1, 5) {
        i16 += 16;
        FOR (j, 0, 16) {
            ctx->input[j] += lit_sigma1(ctx->input[(j- 2) & 15]);
            ctx->input[j] += lit_sigma0(ctx->input[(j-15) & 15]);
            ctx->input[j] +=            ctx->input[(j- 7) & 15];
            u64 in = K[i16 + j] + ctx->input[j];
            u64 t1 = big_sigma1(e) + ch (e, f, g) + h + in;
            u64 t2 = big_sigma0(a) + maj(a, b, c);
            h = g;  g = f;  f = e;  e = d  + t1;
            d = c;  c = b;  b = a;  a = t1 + t2;
        }
    }

    ctx->hash[0] += a;    ctx->hash[1] += b;
    ctx->hash[2] += c;    ctx->hash[3] += d;
    ctx->hash[4] += e;    ctx->hash[5] += f;
    ctx->hash[6] += g;    ctx->hash[7] += h;
}

static void sha512_set_input(crypto_sha512_ctx *ctx, u8 input)
{
    if (ctx->input_idx == 0) {
        ZERO(ctx->input, 16);
    }
    size_t word = ctx->input_idx >> 3;
    size_t byte = ctx->input_idx &  7;
    ctx->input[word] |= (u64)input << (8 * (7 - byte));
}

// increment a 128-bit "word".
static void sha512_incr(u64 x[2], u64 y)
{
    x[1] += y;
    if (x[1] < y) {
        x[0]++;
    }
}

static void sha512_end_block(crypto_sha512_ctx *ctx)
{
    if (ctx->input_idx == 128) {
        sha512_incr(ctx->input_size, 1024); // size is in bits
        sha512_compress(ctx);
        ctx->input_idx = 0;
    }
}

static void sha512_update(crypto_sha512_ctx *ctx,
                          const u8 *message, size_t message_size)
{
    FOR (i, 0, message_size) {
        sha512_set_input(ctx, message[i]);
        ctx->input_idx++;
        sha512_end_block(ctx);
    }
}

void crypto_sha512_init(crypto_sha512_ctx *ctx)
{
    ctx->hash[0] = 0x6a09e667f3bcc908;
    ctx->hash[1] = 0xbb67ae8584caa73b;
    ctx->hash[2] = 0x3c6ef372fe94f82b;
    ctx->hash[3] = 0xa54ff53a5f1d36f1;
    ctx->hash[4] = 0x510e527fade682d1;
    ctx->hash[5] = 0x9b05688c2b3e6c1f;
    ctx->hash[6] = 0x1f83d9abfb41bd6b;
    ctx->hash[7] = 0x5be0cd19137e2179;
    ctx->input_size[0] = 0;
    ctx->input_size[1] = 0;
    ctx->input_idx = 0;
}

void crypto_sha512_update(crypto_sha512_ctx *ctx,
                          const u8 *message, size_t message_size)
{
    if (message_size == 0) {
        return;
    }
    // Align ourselves with block boundaries
    size_t aligned = MIN(align(ctx->input_idx, 128), message_size);
    sha512_update(ctx, message, aligned);
    message      += aligned;
    message_size -= aligned;

    // Process the message block by block
    FOR (i, 0, message_size / 128) { // number of blocks
        FOR (j, 0, 16) {
            ctx->input[j] = load64_be(message + j*8);
        }
        message        += 128;
        ctx->input_idx += 128;
        sha512_end_block(ctx);
    }
    message_size &= 127;

    // remaining bytes
    sha512_update(ctx, message, message_size);
}

void crypto_sha512_final(crypto_sha512_ctx *ctx, u8 hash[64])
{
    sha512_incr(ctx->input_size, ctx->input_idx * 8); // size is in bits
    sha512_set_input(ctx, 128);                       // padding

    // compress penultimate block (if any)
    if (ctx->input_idx > 111) {
        sha512_compress(ctx);
        ZERO(ctx->input, 14);
    }
    // compress last block
    ctx->input[14] = ctx->input_size[0];
    ctx->input[15] = ctx->input_size[1];
    sha512_compress(ctx);

    // copy hash to output (big endian)
    FOR (i, 0, 8) {
        store64_be(hash + i*8, ctx->hash[i]);
    }

    WIPE_CTX(ctx);
}

void crypto_sha512(u8 hash[64], const u8 *message, size_t message_size)
{
    crypto_sha512_ctx ctx;
    crypto_sha512_init  (&ctx);
    crypto_sha512_update(&ctx, message, message_size);
    crypto_sha512_final (&ctx, hash);
}

static void sha512_vtable_init(void *ctx) {
    crypto_sha512_init(&((crypto_sign_ed25519_ctx*)ctx)->hash);
}
static void sha512_vtable_update(void *ctx, const u8 *m, size_t s) {
    crypto_sha512_update(&((crypto_sign_ed25519_ctx*)ctx)->hash, m, s);
}
static void sha512_vtable_final(void *ctx, u8 *h) {
    crypto_sha512_final(&((crypto_sign_ed25519_ctx*)ctx)->hash, h);
}
const crypto_sign_vtable crypto_sha512_vtable = {
    crypto_sha512,
    sha512_vtable_init,
    sha512_vtable_update,
    sha512_vtable_final,
    sizeof(crypto_sign_ed25519_ctx),
};

////////////////////
/// HMAC SHA 512 ///
////////////////////
void crypto_hmac_sha512_init(crypto_hmac_sha512_ctx *ctx,
                             const u8 *key, size_t key_size)
{
    // hash key if it is too long
    if (key_size > 128) {
        crypto_sha512(ctx->key, key, key_size);
        key      = ctx->key;
        key_size = 64;
    }
    // Compute inner key: padded key XOR 0x36
    FOR (i, 0, key_size)   { ctx->key[i] = key[i] ^ 0x36; }
    FOR (i, key_size, 128) { ctx->key[i] =          0x36; }
    // Start computing inner hash
    crypto_sha512_init  (&ctx->ctx);
    crypto_sha512_update(&ctx->ctx, ctx->key, 128);
}

void crypto_hmac_sha512_update(crypto_hmac_sha512_ctx *ctx,
                               const u8 *message, size_t message_size)
{
    crypto_sha512_update(&ctx->ctx, message, message_size);
}

void crypto_hmac_sha512_final(crypto_hmac_sha512_ctx *ctx, u8 hmac[64])
{
    // Finish computing inner hash
    crypto_sha512_final(&ctx->ctx, hmac);
    // Compute outer key: padded key XOR 0x5c
    FOR (i, 0, 128) {
        ctx->key[i] ^= 0x36 ^ 0x5c;
    }
    // Compute outer hash
    crypto_sha512_init  (&ctx->ctx);
    crypto_sha512_update(&ctx->ctx, ctx->key , 128);
    crypto_sha512_update(&ctx->ctx, hmac, 64);
    crypto_sha512_final (&ctx->ctx, hmac); // outer hash
    WIPE_CTX(ctx);
}

void crypto_hmac_sha512(u8 hmac[64], const u8 *key, size_t key_size,
                        const u8 *message, size_t message_size)
{
    crypto_hmac_sha512_ctx ctx;
    crypto_hmac_sha512_init  (&ctx, key, key_size);
    crypto_hmac_sha512_update(&ctx, message, message_size);
    crypto_hmac_sha512_final (&ctx, hmac);
}


///////////////
/// Ed25519 ///
///////////////

void crypto_ed25519_public_key(u8       public_key[32],
                               const u8 secret_key[32])
{
    crypto_sign_public_key_custom_hash(public_key, secret_key,
                                       &crypto_sha512_vtable);
}

void crypto_ed25519_sign_init_first_pass(crypto_sign_ctx_abstract *ctx,
                                         const u8 secret_key[32],
                                         const u8 public_key[32])
{
    crypto_sign_init_first_pass_custom_hash(ctx, secret_key, public_key,
                                            &crypto_sha512_vtable);
}

void crypto_ed25519_check_init(crypto_check_ctx_abstract *ctx,
                               const u8 signature[64],
                               const u8 public_key[32])
{
    crypto_check_init_custom_hash(ctx, signature, public_key,
                                  &crypto_sha512_vtable);
}

void crypto_ed25519_sign(u8        signature [64],
                         const u8  secret_key[32],
                         const u8  public_key[32],
                         const u8 *message, size_t message_size)
{
    crypto_sign_ed25519_ctx ctx;
    crypto_sign_ctx_abstract *actx = (crypto_sign_ctx_abstract*)&ctx;
    crypto_ed25519_sign_init_first_pass (actx, secret_key, public_key);
    crypto_ed25519_sign_update          (actx, message, message_size);
    crypto_ed25519_sign_init_second_pass(actx);
    crypto_ed25519_sign_update          (actx, message, message_size);
    crypto_ed25519_sign_final           (actx, signature);
}

int crypto_ed25519_check(const u8  signature [64],
                         const u8  public_key[32],
                         const u8 *message, size_t message_size)
{
    crypto_check_ed25519_ctx ctx;
    crypto_check_ctx_abstract *actx = (crypto_check_ctx_abstract*)&ctx;
    crypto_ed25519_check_init  (actx, signature, public_key);
    crypto_ed25519_check_update(actx, message, message_size);
    return crypto_ed25519_check_final(actx);
}

void crypto_from_ed25519_private(u8 x25519[32], const u8 eddsa[32])
{
    u8 a[64];
    crypto_sha512(a, eddsa, 32);
    COPY(x25519, a, 32);
    WIPE_BUFFER(a);
}